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Admittance spectroscopy revisited: Single defect admittance
and displacement current
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A general approach to semiconductor device admittance spectroscopy analysis is developed, which
describes arbitrary defect distributions, and gives the geometrical capacitance limit and the
relationship between the measured conductance and capacitance. A single defect capacitance
concept is introduced that facilitates the analysis. Special attention is paid to accounting for the role
of displacement current, which was overlooked in the preceding work. An experimental verification
of the approach is given. ©2003 American Institute of Physics.@DOI: 10.1063/1.1617363#
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I. INTRODUCTION

Admittance spectroscopy is one of the major semic
ductor diagnostic techniques. It has several modifications1–3

of which the capacitance–voltage (C–V) and admittance–
frequency (Y–v) are most known. TheC–V profiling tests
the spatial charge distribution. Frequency dependent ad
tanceY(v) is generally attributed to defects. Indeed, beca
in response to the testing ac electric potential, defects cha
their occupation numbers depending on their relaxat
times, they have frequency dependent charge storing ab
In spite of numerous applications, theY(v) data are not
fully understood. The interpretation lacks basic concepts
would apply to an arbitrary system/model and discrimin
between major features and minor details. For example,
displacement current component is commonly missed in
calculated admittance; the existing models do not contain
geometrical capacitance limit; there is no direct way to e
mate the number of contributing defects from the data.
this work we try to put the admittance spectroscopy interp
tation on a more solid basis. We introduce a single de
impedance concept, which facilitates the data interpretat
and pay special attention to taking the displacement cur
into consideration. We derive the formula for admittance t
applies to any system, contains the geometrical capacita
limit, and establishes the domains of applicability of the e
isting models.

Our article is organized as follows. In Sec. II we prese
an intuitive approach to a single defect capacitance. T
approach is substantiated and extended to the case of d
admittance in Sec. III. In Sec. IV we describe how the test
ac electric signal is screened in the system. Section V
sents a general formula for defect related integral sys
admittance. This formula is specified in Sec. VI for the lim
iting cases of~a! the constant defect density of states,~b!

a!Electronic mail: vkarpov@physics.utoledo.edu
5800021-8979/2003/94(9)/5809/5/$20.00
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narrow defect band, and~c! arbitrary defect distribution in
the weak screening limit. In Sec. VII we derive the relatio
ship between the admittance and capacitance, which is
nificantly different from the Kramers–Kro¨nig transformation
and has a form specific to defect contributions. Our findin
are experimentally verified in Sec. VIII for the case of Cd
photovoltaics.

II. ELEMENTAL DEFECT CAPACITANCE

We start with an intuitive explanation of a single defe
capacitance based on the band diagram~Fig. 1! that includes
a number of defect levels and band bending caused by e
nal bias or contact potential. In particular, it can represen
Schottky barrier4 or part of ap–n junction. Consider a de-
fect level with the energyEv below the band edge. A sma
testing ac voltageU5U0 exp(ivt) modulates the free-carrie
concentration in the proximity of the defect. This can
equally expressed in terms of the local quasi-Fermi le
modulation,dEF5qU, whereq is the electron charge. To
begin, we assume the defect relaxation time to be short,vt
!1. Then, the defect occupation will adiabatically follo
dEF ,

d f 5~2] f /]E!dEF5 f ~12 f !dEF /kT,

where f 5$11exp@(EF2E)/kT#%21 is the Fermi distribution.
The change in occupation number induces the current,

j 5q
]d f

]t
5 ivC0U, ~1!

where, in accordance with Ohm’s law, we have introduc
the elemental quasistatic (vt!1) defect capacitance

C05 f ~12 f !
q2

kT
. ~2!
9 © 2003 American Institute of Physics
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C0 is independent of defect structure and equally applie
the electrons and holes being invariant with respect to
changef→12 f , q→2q.

Note that while the expression forC0 seemingly di-
verges withT→0, the relaxation timet simultaneously in-
creases, thereby violating the conditionvt!1 under which
Eq. ~2! holds; this is taken into account in what follow
Note, also, that the same result forC0 follows from the dif-
ferential capacitance definitionC5qdd f /dU.

A comment is in order regarding the physical meaning
the above result. While it has a 90° phase shift from
applied field, the currentj in Eq. ~1! is related to the rea
charge transfer, as illustrated in Fig. 1. This should not
mixed with the displacement current that occurs without r
charge transfer@taken into account below; see Eq.~13!#, in
which the standard electrodynamic definition5 is JD

5]D/4p]t, whereD is the electric induction. The differ
ence is clearly seen from an example of the standard
plate capacitor where the above derived ‘‘defect’’ current
absent, while the displacement current determines the
metrical capacitance valueCg5JD / ivU.

C0 is relatively small beyond a narrow band;kT near
EF because neither strongly populated (12 f !1) nor empty
( f !1) defects can significantly change their occupat
numbers in response to a small perturbation. It has a s
maximum for defects withE5EF ~i.e., f 51/2). By way of
illustration, the maximum defect capacitance (C0)max

[q2/4kT is 2310218 F at room temperature, which coin
cides with the capacitance of a 140 Å radius metal sphe

Note that the importance of the lengthq2/kT has long
been recognized in connection with the electron scatte
and capturing by charged centers in solids. However, h
this length is related to the capacitance. A simple phys
explanation of the ‘‘elemental’’ capacitanceq2/kT is that the
defect changes its charge by;q in response to the electri
potential variation;kT/q.

FIG. 1. Top: energy band diagram for defect states and related process
the Schottky barrier. Thin dashed lines represent defect levels of diffe
energies. Solid and dashed arrows show, respectively, trapping–detra
processes and related electron currents. Other notations are explained
text. Bottom: spatial distributions of the electric induction (D), total current
(Jt), and its real (Jr) and displacement (JD) components.
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III. SINGLE DEFECT ADMITTANCE

It is straightforward to extend the above consideration
arbitraryvt. This will be shown to result in the concept o
defect admittance, in which the quantity has both real~con-
ductance! and imaginary~capacitance! parts.

We start by clarifying the assumption ofEF modulation
being the primary defect recharging source. This is justifi
by noting thatEF5T ln(Nc /n), whereNc is the effective con-
centration of states in the band, and the free-carrier conc
tration n oscillates almost independently of defect recha
ing. The latter independence reflects the fact that the fr
carrier relaxation time~of dielectric nature! in the external
field is, typically, much shorter thant. We, therefore, assum
that the free electrons adiabatically follow the testing pert
bation and recharge the defect states.

We shall now introduce the defect admittancey[ j /U,
where, generally speaking, the defect currentj contains both
the imaginary and real parts. Following the above consid
ation, the admittance imaginary part divided byiv is called
the defect capacitance, while its real part is the defect c
ductance. We start with the balance equation that descr
the defect recharging rate:

] f

]t
5n~12 f !p↓2 f p↑Nc . ~3!

Here, p↓ and p↑5p↓ exp(2E/kT) are the electron trapping
and detrapping probabilities (cm3 s21). To solve the latter
equation we substitute the standard presentation for the
modulated quantities

n5n01dn0 exp~ ivt !,

f 5 f 01d f 0 exp~ ivt !, ~4!

qU5dEF52kTdn0 exp~ ivt !/n,

where modulation amplitudes are considered small,dn0

!n0 and d f 0! f 0 . Linearizing Eq.~3! with respect todn0

andd f 0 and introducing the defect relaxation time

1

t
5p↑Nc1p↓n, ~5!

yields the equation for the defect occupation number

d f 05
1

11 ivt

C0U

q
. ~6!

Calculating the currentj 5q] f /]t gives the defect admit-
tance,

y[
j

U
5G1 ivC, ~7!

where the defect conductance (G) and capacitance (C) are
introduced as

G5C0

v2t

11~vt!2 , C5
C0

11~vt!2 . ~8!

The latter quantities are related to the defect relaxation t
and energy level position~through the definition forC0) and
are not sensitive to its microscopic structure.
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IV. SCREENING

The original testing field is screened due to defect
charging~we neglect the free-carrier redistribution!. This is
described by the Poisson equation

d2U

dx2 52
4pq

e E d f 0~E!g~E!dE, ~9!

whereg(E) is the defect density of states ande is the dielec-
tric constant. Substituting here Eqs.~6! and ~2! yields

d2U

dx2 5
U

L2 ,
1

L2 5
4pq2g@EF~x!#

e$11 ivt@EF~x!#%
, ~10!

where L is the screening length. Such screening has lo
been known forg(E)5constant in the static limit where6 L
5L05Ae/4pq2g. The two qualitatively different regimes o
screening are that of~i! a monoenergy defect level,g(E)
5Nd(E2Ev), and~ii ! a continuous density of states.

For case~i! we integrate Eq.~10! from xv2d to xv

1d, d→0, where the pointxv is defined byEF(x)5Ev ~see
Fig. 1!. We take into account thatd(E2Ev)udEvu5d(x
2xv)udxu and that the static electric fielddEv /qdx
54pqNxv /e. This gives a stepwise change

dE5
E

11 ivt
. ~11!

in the testing fieldE52dU/dx. In the static limitvt!1 the
field is completely screened at the boundary (x5xv) be-
tween filled and empty states. At not very small frequenc
the field penetrates infinitely deep and has the opposite-p
~capacitive! component.

For case~ii ! of continuousg(E) we use the standar
representationt5t0 exp(E/kT) and introduce the demarca
tion energy2

Ev5kT lnS 1

vt0
D , ~12!

separating ‘‘fast’’ (E,Ev) and ‘‘slow’’ ( E.Ev) states. The
corresponding spatial separation occurs atxv ~see Fig. 1!.
The slow states give almost no contribution to screeni
while the fast ones are described in the static limit; a narr
transitional bandEv6kT is immaterial.7 Using the static
screening length we conclude that the field penetrates
nitely deep whenL0.xv and is significantly screened whe
L0,xv .

V. INTEGRAL ADMITTANCE

The integral admittanceY5Jt /Ut is defined through the
integral current (Jt) and total potential drop (Ut) across the
system. In calculatingJt we note that the defect rechargin
currentJr is due to real charge transfer. Taking into accou
also the displacement currentJD the total current per uni
areaJt5Jr1JD can be presented in the form

Jt5E dxg@EF~x!#U~x!y@EF~x!#1
]D~x!

4p]t
. ~13!

Naturally, Jt is independent ofx, which can be verified by
usingD52e]U/]x and Eq.~10!. This means, in particular
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that in the regions where defects are fully ionized and do
change their charge states, the system admittance is o
entirely displacement current nature, similar to the we
known flat plate capacitor case.

As is shown in Fig. 1, the defect recharging is su
pressed and the current is of an entirely displacement na
Jt5JD at x,xv . In other words, the region atx,xv plays
the role of an effective flat plate capacitor and defect
charging is irrelevant. However,Jr increases withx at x
.xv thus balancing the decay inJD . Physically,JD decay is
due to screening, while theJr increase follows the number o
defects in the regionx2xv . As xv increases withv, the
displacement current region expands and at certain freque
v l approaches the geometrical size of the system,xv5 l
whenEv l

5EF( l ). At v.v l the system is characterized b
its geometrical capacitance per unit areaCg5e/4p l .

Based on Eq.~13! one can calculate the integral adm
tance asY5Jt /Ut . The shape ofU(x) in the integrand of
Eq. ~13! must be preliminary found from Eq.~10!. However,
given the latter shape the admittance can be calculated m
easily through the displacement current. Indeed, becausJr

1JD5constant andJr50 at x,xv , Eq. ~13! gives the ad-
mittance

Y5
1

4pUt

]D~xv2d!

]t ud→0
. ~14!

Here, smalld is introduced to make the equation applicab
to a narrow defect band whereD(x) changes abruptly, as, fo
example, described in Eq.~11!. D(xv) can be expressed by

D~xv!xv1E
xv

l

D~x!dx5eUt . ~15!

Equations~14! and ~15! together with Eq.~10! solve the
problem of finding the admittance corresponding to a giv
defect density of states.

Note that the lengthxv remains a parameter in th
present consideration. Its value is determined by the st
electric field distribution in the system~the barrier shape in
Fig. 1!, which in turn depends on the defect density of sta
and external voltage. To calculatexv one has to solve the
static Eq.~10! for a given defect density of states and Fer
level position. In applications, the inverse problem of calc
lating the defect density of states based on the impeda
measurements is of major interest. This requires develop
a nontrivial numerical algorithm where the frequenc
dependent impedance data input is used to solve Eqs.~14!,
~15!, and~10!, simultaneously, for the electric field distribu
tion and defect density of states.

We emphasize the displacement current contribution
particular, Ct5(Yt / iv) turns out to be different from the
differential capacitance C5dQ/dU. Indeed, dQ/dUt

5Jrdt/dUt5Jr / ivUt lacks the displacement current contr
bution as compared toCt5Jt / ivUt . Experimentally,C is
found throughJt vs Ut measurements, which includeJD .

Surprisingly, theJD contribution has been overlooked i
the available literature, most of which was based on
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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dQ/dUt definition ~see the reviews in Refs. 1–3 and 8!. The
interpretation in Refs. 9–11, while utilizing theJt /Ut ap-
proach, does not includeJD either.

VI. SPECIFIC CASES

In this section we consider three different cases wh
closed form results can be derived.

A. Constant density of states

We start with the case ofg(E)5constant, which in Ref.
4 was analyzed based on thedQ/dUt definition. Substituting
in Eq. ~15! D(x)5D(xv)exp@2(x2xv)/L# to find D(xv) and
using Eq.~14! we get

Y5
ive

4p$xv1L2L exp@~xv2 l !/L#%
. ~16!

For C5I(Y/v) the result has the intuitively clear flat-pla
capacitor form. The effective interplate distance is given
the field penetration depth, which isl in the case of weak
screeningl 2xv!L, or xv1L when the screening is strong
While it has a similar general shape, our result is quite d
ferent from that in Ref. 4. In particular, none of the abo
cited sources, including Ref. 4, gives the geometrical cap
tance limit.

B. Narrow band

The alternative case of a narrow defect band can be
proximated by the above discussedg(E)5Nd(E2Ev). Us-
ing Eqs.~11!, ~15!, and~14! yields

Y5Cg

v2t~ l 2xv!1 iv@~xv / l !1~vt!2#

~xv / l !21~vt!2 . ~17!

This is consistent with the solution of a similar problem
Refs. 2 and 12 far from the geometrical capacitance lim
Our result correctly predicts the geometrical limit in the ca
of high frequencies where the last term in Eq.~17! domi-
nates. Note that a narrow defect band appears to be the
case where the result can be equally calculated base
eitherJr or JD current, since they are spatially separated

C. Weak screening

For arbitraryg(E) the problem can be solved analyt
cally in the weak screening limit whereD(x)5D̄1dD(x)
with dD!D̄5constant. We approximateU5D̄(x2 l )/e on
the right-hand side of the Poisson Eq.~10! to calculatedD

5D̄*dx(x2 l )/L2 and findD̄ from Eq.~15!. Close toEv we
representEF5Ev1qE(Ev)(x2xv) and use the standard ap
proximation

1

11 ivt
5Q~x2xv!1 i

pT

qE~Ev!
d~x2xv!,

whereQ(x) and d(x) are the step and delta functions. A
suming smoothg(E) we finally obtain
Downloaded 31 Oct 2003 to 131.183.161.171. Redistribution subject to A
e

y

-

i-

p-

t.
e

nly
on

Y5
pqTv

E~Ev!l 2 ~ l 2xv!2g~Ev!

1 ivFCg1
q

l 2 E
EF,min

Ev
dEFg~EF!

~ l 2x~EF!!2

uE~EF!u G . ~18!

Here,E(EF)[dEF /qdx is the static electric field at the poin
x(EF) where the Fermi level measured from the band edg
EF .

For practical purposes, it follows from the above that t
uniform field ~weak screening! approximation holds when
the difference between measured capacitance and its h
frequency valueCg ~the frequency-dependent part of capa
tance! is relatively small. In particular, a widely used mod
of additive geometrical and defect-related capacitances
beyond the weak screening limit.

VII. CONDUCTANCE–CAPACITANCE RELATIONSHIP

One direct consequence of Eq.~18! is the relationship
between the reduced conductance and capacitance

G

v
52p

dC

d~ ln v!
, ~19!

which plays the role of a Kramers–Kro¨nig transformation.
Based on the above Eqs.~8!, ~10!, ~13! one can prove Eq.
~19! to hold beyond the weak screening case.

Because Eq.~19! is specific to the defect contribution
can be used to verify the nature of measured admittance
illustrated below. Note, however, that the assumption
smoothg(E) underlying Eq.~19! fails for the case of a nar
row defect band~of the width&kT).

VIII. EXPERIMENT

As an illustration of our approach, consider the data
thin-film p–n junctions made of 0.3-mm-thick CdS (n type!
and 4-mm-thick CdTe (p type! deposited on commercia
transparent conductive oxide coated glass. A SRS 830 d
phase digital lock-in amplifier was used in conjunction w
a home-built self-calibrating signal-conditioning device. T
excitation signal amplitude was about 3.5 mV, frequen
range fromvmin;0.1 tovmax;105 kHz.

Shown in Fig. 2 is the measured capacitance for dc b
Defect-related features fall in the domain below 1000 k
~corresponds to lnv'9 in Fig. 2! where noticeable fre-
quency dependence is seen. This points at defects with
characteristic relaxation times ranging from 1025 to 100 s. In
the high-frequency region the measured capacitance co
sponds to the flat-plate capacitor with the interplate dista
l'4 mm consistent with the device thickness.

As is illustrated in Fig. 2, our data confirm Eq.~19!
through almost the entire frequency region, which we co
sider strong evidence that the measured admittance fea
are due to defects.~Minor irregularities in the curve
dC/d ln v result from numerical differentiation.! Strong de-
viation of dC/d ln v from the data in the low-frequency re
gion is attributed to a narrow defect band atE'0.56 eV, as
is described by Eq.~17!. The integral number of active de
fects can be estimated as@C(v)2Cg#/C0'33108 cm22.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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The latter number can be used to estimate the conce
tion of defects beyond the active bandkT;0.025 eV. In-
deed, based on the observed frequency dependencies in
2, we conclude that defects of comparable density of st
occupy the bandB;kT ln(vmax/vmin) of the order of severa
tenths of electronvolts, sayB;0.3 eV. The factorB/kT
;10 translates the above figure into the integral defect n
ber Nd;33109 cm22. Assuming the defects to be un
formly distributed across the CdTe film, the correspond
bulk defect concentrationNd / l;1013 cm23 is comparable to
the known acceptor concentration in CdTe photovoltaic13

Further analysis of the CdS/CdTe device admittance d
including numerical extraction of the defect density of stat
will be given elsewhere.

IX. CONCLUSIONS

In conclusion, a general approach to semiconductor
vice admittance spectroscopy analysis is developed. It

FIG. 2. Capacitance (C), reduced conductance@(G2G0)/v#, and the de-
rivative pdC/d(ln v) vs frequency in the CdS/CdTe junction.G0 is the
direct current conductance.
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scribes arbitrary defect distributions, contains the geome
cal capacitance limit, and gives the relationship betwe
conductance and capacitance that can be used to tes
defect nature of measured admittance. A single defect cap
tance concept is introduced that facilitates the analysis. S
experimental verification of our findings is given. From th
practical standpoint, our consideration introduces a diagn
tic toolkit that enables one to verify the defect nature of t
measured capacitance and calculate the number of active
fects.
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